Research Article
8 September 2015

Potential Environmental Effects of Expanding Lake Jökulsárlón in Response to Melting of Breiðamerkurjökull, Iceland

Publication: Cartographica: The International Journal for Geographic Information and Geovisualization
Volume 50, Number 3

ABSTRACT

ABSTRACT

Glacial retreat has been well documented in several studies on the Vatnajökull ice cap. Breiðamerkurjökull, an outlet glacier from Vatnajökull, has been actively retreating since the end of the Little Ice Age in the mid-nineteenth century. There is a strong correlation between the increasing rate of glacial melt resulting from rising global temperatures and the expansion of proglacial lakes. Jökulsárlón, a proglacial lake associated with Breiðamerkurjökull, has grown significantly, from 14.6 km2 to 25.4 km2, between 1999 and 2014, as illustrated in a series of Landsat 7 ETM+ and Landsat 8 images. Climate models predict that global temperatures will continue rising, which will impact the rate of glacial melt and subsequent expansion of proglacial lakes. These trends, as seen around the Breiðamerkurjökull-Jökulsárlón area, may result in serious environmental complications for the Icelandic population in the future. For that reason, it is important to monitor this phenomenon and take precautions where necessary. Jökulsárlón will also serve as a modern analogue for future studies on understanding the relationship between outlet glaciers and proglacial lakes' responses to climatic change.

RÉSUMÉ

Le recul glaciaire a été formé et documenté dans nombre d'études sur la calotte glaciaire Vatnajökull. Le Breiðamerkurjökull, glacier émissaire du Vatnajökull, recule sans cesse depuis la fin du Petit Âge glaciaire du milieu du XIXe siècle. Il existe une forte corrélation entre l'augmentation du rythme de fonte glaciaire due à la hausse des températures mondiales et l'expansion des lacs proglaciaires. Le Jökulsárlón, lac proglaciaire associé au Breiðamerkurjökull, a gagné considérablement en superficie, passant de 14,6 km2 à 25,5 km2 entre 1999 et 2014, comme l'illustre une série de sept images ETM+ du satellite Landsat. D'après les modèles climatiques, les températures mondiales continueront d'augmenter, ce qui aura des répercussions sur le taux de fonte glaciaire et sur l'expansion subséquente des lacs proglaciaires. Ces tendances, telles que constatées aux environs de la zone Breiðamerkurjökull-Jökulsárlón, pourraient générer de graves complications environnementales pour la population islandaise dans les années à venir. Voilà pourquoi il est important de surveiller le phénomène et de prendre au besoin des précautions. Le Jökulsárlón servira également d'analogue moderne pour les études futures visant à comprendre la relation entre les glaciers émissaires et les réactions des lacs proglaciaires au changement climatique.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aðalgeirsdóttir, G., S. Guðmundsson, H. Björnsson, F. Pálsson, T. Jóhannesson, H. Hannesdóttir, S.P. Sigurðsson, and E. Berthier. 2011. “Modelling the 20th and 21st Century Evolution of Hoffellsjökull Glacier, SE-Vatnajökull, Iceland.” Cryosphere 5 (4): 961–75. https://doi.org/10.5194/tc-5-961-2011
Aðalgeirsdóttir, G., T. Jóhannesson, H. Björnsson, F. Pálsson, and O. Sigurdsson. 2006. “Response of Hofjökull and Southern Vatnajökull, Iceland, to Climate Change.” Journal of Geophysical Research 111 (F3): 1–15. https://doi.org/10.1029/2005JF000388
Carrivick, J.L., and F.S. Tweed. 2013. “Proglacial Lakes: Character, Behaviour and Geological Importance.” Quaternary Science Reviews 78:34–52. https://doi.org/10.1016/j.quascirev.2013.07.028
Denis, M., J.F. Buoncristiani, and M. Guiraud. 2009. “Fluid-Pressure Controlled Soft-Bed Deformation Sequence beneath the Surging Breiðamerkurjökull.” Sedimentary Geology 221 (1–4): 71–86. https://doi.org/10.1016/j.sedgeo.2009.07.013
ESRI. 2013. ArcGIS 10.2: ArcMap version 10.2 ESRI, Redlands. CA
Evans, D.J.A., and D.R. Twigg. 2002. “The Active Temperate Glacial Landsystem: A Model Based on Breiðamerkurjökull and Fjallsjökull, Iceland.” Quaternary Science Reviews 21 (20–22): 2143–77. https://doi.org/10.1016/S0277-3791(02)00019-7
Flowers, G.E., J.M. Shawn, H. Björnsson, and G.K.C. Clarke. 2005. “Sensitivity of Vatnajökull Ice Cap Hydrology and Dynamics to Climate Warming over the Next 2 Centuries.” Journal of Geophysical Research 110 (F2): 1–19. https://doi.org/10.1029/2004JF000200
Hall, M.H.P., and D.B. Fagre. 2003. “Modeled Climate-Induced Glacier Change in Glacier National Park, 1850–2100.” Bioscience 53 (2): 131–40. https://doi.org/10.1641/0006-3568(2003)053[0131:MCIGCI]2.0.CO;2
Hock, R. 2003. “Temperature Index Melt Modelling in Mountain Areas.” Journal of Hydrology (Amsterdam) 282 (1–4): 104–15. https://doi.org/10.1016/S0022-1694(03)00257-9
Icelandic Meteorological Office. 2014. “Annual Data for Höfn í Hornafirði.” Available at http://www.vedur.is/Medaltalstoflur-txt/Stod_705_Hofn_i_Hornafirdi.ArsMedal.txt
Jones, P.D., K.R. Briffa, T.P. Barnett, and S.F.B. Tett. 1998. “High-Resolution Paleoclimatic Records for the Last Millennium: Interpretation, Integration and Comparison with General Circulation Model Control-Run Temperatures.” Holocene 8 (4): 455–71. https://doi.org/10.1191/095968398667194956
Jónsdóttir, J.F. 2008. “A Runoff Map Based on Numerically Simulated Precipitation and a Projection of Future Runoff in Iceland.” Hydrological Sciences Journal 53 (1): 100–11. https://doi.org/10.1623/hysj.53.1.100
Komori, J., T. Koike, T. Yamanokuchi, and P. Tshering. 2012. “Glacial Lake Outburst Events in the Bhutan Himalayas.” Global Environmental Research 16:59–70
Landl, B., H. Björnsson, and M. Kuhn. 2003. “The Energy Balance of Calved Ice in Lake Jökulsárlón, Iceland.” Arctic, Antarctic, and Alpine Research 35 (4): 475–81. https://doi.org/10.1657/1523-0430(2003)035[0475:TEBOCI]2.0.CO;2
Larsen, K.N., K.H. Kjaer, B. Lecavalier, A.A. Bjork, S. Colding, P. Huybrechts, K.E. Jakobsen, and others. 2015. “The Response of the Southern Greenland Ice Sheet to the Holocene Thermal.” Geology 43 (3): 291–94
Mann, M.E. 2002. “Little Ice Age.” In Encyclopedia of Global Environmental Change, vol. 1, ed. M. MacCracken and J.S. Perry, 504–9.Chichester, UK: Wiley
National Land Survey of Iceland. 2013. Free Digital Data. Available at http://www.lmi.is/en/stafraen-gogn/
Ohmura, A. 2001. “Physical Basis for the Temperature-Based Melt-Index Method.” Journal of Applied Meteorology and Climatology 40 (4): 753–61. https://doi.org/10.1175/1520-0450(2001)040%3C0753:PBFTTB%3E2.0.CO;2
Pearce, C.R., K.W. Burton, P.A.E. Pogge von Strandmann, R.H. James, and S.R. Gíslason. 2010. “Molybdenum Isotope Behaviour Accompanying Weathering and Riverine Transport in a Basaltic Terrain.” Earth and Planetary Science Letters 295 (1–2): 104–14. https://doi.org/10.1016/j.epsl.2010.03.032
Price, R.J. 1969. “Moraines, Sandar, Kames, and Eskers near Breidamerkurjökull, Iceland.” Transactions of the Institute of British Geographers 46: 17–43. https://doi.org/10.2307/621406
Rae, J., G. Aðalgeirsdóttir, T. Edwards, X. Fettweis, G. Gregory, H. Hewitt, J. Lowe, and others. 2012. “Greenland Ice Sheet Surface Mass Balance: Evaluating Simulations and Making Projections with Regional Climate Models.” Cryosphere 6: 1275–94. https://doi.org/10.5194/tc-6-1275-2012
Rummukainen, M., J. Räisänen, D. Bjørge, J.H. Christensen, O.B. Christensen, T. Iversen, K. Jylhä, and others. 2003. “Regional Climate Scenarios for Use in Nordic Water Resources Studies.” Nordic Hydrology 34 (5): 399–412
Schomacker, A. 2010. “Expansion of Ice-Marginal Lakes at the Vatnajökull Ice Cap, Iceland, from 1999 to 2009.” Geomorphology 119(3–4): 232–36. https://doi.org/10.1016/j.geomorph.2010.03.022
Stokes, C.R., V. Popovnin, A. Aleynikov, S.D. Gurney, and M. Shahgedanova. 2007. “Recent Glacier Retreat in the Caucasus Mountains, Russia, and Associated Increase in Supraglacial Debris Cover and Supra-/Proglacial Lake Development.” Annals of Glaciology 46 (1): 195–203. https://doi.org/10.3189/172756407782871468
US Geological Survey [USGS] Earth Resources Observation and Science Center. 1999. LANDSAT ETM+ – Path: 217 Row: 15 for Entity ID: LE72170151999280EDC01. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2000. LANDSAT ETM+ – Path: 217 Row: 15 for Entity ID: LE72170152000267EDC00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2002. LANDSAT ETM+ – Path: 216 Row: 15 for Entity ID: LE72160152002137SGS00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2006. LANDSAT ETM+ – Path: 217 Row: 15 for Scene: LE72170152006219EDC00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2008. LANDSAT ETM+ – Path: 217 Row: 15 for Scene: LE72170152008225EDC00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2009. LANDSAT ETM+ – Path: 216 Row: 15 for Scene: LT52160152009228KIS00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2013. LANDSAT_8 – Path: 216 Row: 15 for Scene: LC82160152013207LGN00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/
USGS Earth Resources Observation and Science Center. 2014. LANDSAT_8 – Path: 217 Row: 15 for Scene: LC82170152014281LGN00. EarthExplorer. LANDSAT TM. Sioux Falls, SD, USA. Available at http://earthexplorer.usgs.gov/

Information & Authors

Information

Published In

Go to Cartographica
Cartographica: The International Journal for Geographic Information and Geovisualization
Volume 50Number 3Fall 2015
Pages: 204 - 213

History

Published in print: Fall 2015
Published online: 8 September 2015

Keywords:

  1. Breiðamerkurjökull
  2. Jökulsárlón
  3. outlet glacier
  4. proglacial lakes
  5. sediment flux
  6. lake expansion
  7. meltwater
  8. satellite imagery
  9. climate change

Mots clés :

  1. Breiðamerkurjökull
  2. Jökulsárlón
  3. glacier émissaire
  4. lacs proglaciaires
  5. écoulement de sédiments
  6. expansion des lacs
  7. eau de fonte
  8. imagerie satellite
  9. changement climatique

Authors

Affiliations

Daniel Canas
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada
Winnie May Chan
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada
Austen Chiu
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada
Logan Jung-Ritchie
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada
Matthew Leung
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada
Logesh Pillay
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada
Brenda Waltham
School of Geography and Earth Sciences / McMaster University / Hamilton / ON / Canada

Metrics & Citations

Metrics

VIEW ALL METRICS

Related Content

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Format





Download article citation data for:
Daniel Canas, Winnie May Chan, Austen Chiu, Logan Jung-Ritchie, Matthew Leung, Logesh Pillay, and Brenda Waltham
Cartographica 2015 50:3, 204-213

View Options

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

EPUB

View EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

About Cookies On This Site

We use cookies to improve user experience on our website and measure the impact of our content.

Learn more

×