Research Article
21 December 2017

A Simulation and Visualization Environment for Spatiotemporal Disaster Risk Assessments of Network Infrastructures

Publication: Cartographica: The International Journal for Geographic Information and Geovisualization
Volume 52, Number 4

Abstract

Abstract

Emerging methodologies for risk assessments of civil infrastructure networks require the coupling of several spatiotemporal models that need to be executed multiple times with varying parametrizations to account for model uncertainty and to investigate “what-if” scenarios. These requirements led to the development of a software environment to support the simulation process and the visual analysis of its results. The simulation engine component of the environment makes it possible to define, couple, and execute models. An embedded infrastructure model facilitates the development of functionality to estimate and aggregate capacity measures of single objects affected by multiple hazards. The simulation manager component can be used to execute multiple instances of the simulation engine conveniently with varying parametrizations. The included visualization tool provides two complementary views. The ensemble view can be used to analyze the data at a highly aggregated level with information visualization techniques and the simulation view can be used to investigate simulations in greater detail via an interactive map window and a state dependency graph. The software environment is used in a risk assessment for the region of Chur, Switzerland, which comprises the simulation of multiple natural hazard scenarios that lead to impaired transport infrastructure capacities and thus to disrupted traffic flows.

Résumé

Les méthodologies en émergence au chapitre de l'évaluation des risques associés aux réseaux d'infrastructures civiles exigent la conjugaison de plusieurs modèles spatiotemporels qui doivent être exécutés à de multiples reprises, selon divers paramétrages visant la prise en compte de l'incertitude des modèles et l'analyse par simulation de divers scénarios. Ces exigences ont conduit à l'élaboration d'un environnement de programmation étayant le processus de simulation et l'analyse visuelle de ses résultats. Le moteur de simulation de cet environnement permet de définir, de réunir et d'exécuter les modèles. Un modèle intégré d'infrastructure facilite l'élaboration d'une fonctionnalité d'estimation et d'agrégation des mesures de capacité d'objets particuliers donnés à des risques multiples. Le gestionnaire de simulation peut être utilisé pour exécuter commodément de multiples exercices de simulation, selon divers paramétrages. L'outil de visualisation intégré produit deux représentations complémentaires. La représentation globale permet l'analyse des données à un niveau très général à l'aide de techniques de visualisation de l'information, et la représentation de la simulation permet une analyse plus approfondie des simulations au moyen d'une fenêtre de carte interactive et d'un graphe de dépendances des états. Les auteurs utilisent l'environnement de programmation proposé dans une évaluation des risques auxquels est exposée la région de Chur, en Suisse, comportant la simulation de multiples scénarios de risques naturels entraînant une déficience des capacités des infrastructures de transport et perturbant, par conséquent, les flux de circulation.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adey, B.T., J. Hackl, J.C. Lam, P. Van Gelder, P. Prak, N. Van Erp, M. Heitzler, I. Iosifescu Enescu, and L. Hurni. 2016. “Ensuring Acceptable Levels of Infrastructure Related Risks Due to Natural Hazards with Emphasis on Conducting Stress Tests.” In Proceedings of the 1st International Symposium on Infrastructure Asset Management (SIAM), Kyoto, Japan, 21–22 January
Afzal, S., R. Maciejewski, and D.S. Ebert. 2011. “Visual Analytics Decision Support Environment for Epidemic Modeling and Response Evaluation.” In Proceedings of Visual Analytics Science and Technology (VAST), 2011 IEEE Conference, Providence, RI, 23–28 October. IEEE. https://doi.org/10.1109/VAST.2011.6102457
Baker, J.W., M.K. Miller, and M. Markhvida. 2015. “Local Measures of Disruption for Quantifying Seismic Risk and Reliability of Complex Networks.” In Proceedings of 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, Canada, 12–15 July, ed. T. Haukkas
Bastian, M., S. Heymann, and M. Jacomy. 2009. “Gephi: An Open Source Software for Exploring and Manipulating Networks.” In Proceedings of the Third International Conference on Weblogs and Social Media, San Jose, CA, 17–20 May, 361–62. Menlo Park, CA: AAAI Press
Cardona, O.D., M. Ordaz, E. Reinoso, L. Yamín, and A. Barbat. 2012. “CAPRA – Comprehensive Approach to Probabilistic Risk Assessment: International Initiative for Risk Management Effectiveness.” In Proceedings of the 15th World Conference of Earthquake Engineering, Lisbon, Portugal, 24–28 September
Cova, T.J. 1999. “GIS in Emergency Management.” Geographical Information Systems 2: 845–58.
Crnovrsanin, T., C. Muelder, C. Correa, and K.L. Ma. 2009. “Proximity-Based Visualization of Movement Trace Data.” In Proceedings of 2009 IEEE Symposium on Visual Analytics Science and Technology, Atlantic City, NJ, 12–13 November. IEEE. https://doi.org/10.1109/VAST.2009.5332593
de Dios Ortùzar, J., and L.G. Willumsen. 2011. Modelling Transport. Chichester, UK: Wiley. https://doi.org/10.1002/9781119993308
Deckers, P., W. Kellens, J. Reyns, W. Vanneuville, and P. De Maeyer. 2010. “A GIS for Flood Risk Management in Flanders.” In Geospatial Techniques in Urban Hazard and Disaster Analysis, ed. P.S. Showalter and Y. Lu, 51–69. Dordrecht/Heidelberg/London/New York: Springer Netherlands
Grossi, P., H. Kunreuther, and D. Windeler. 2005. “An Introduction to Catastrophe Models and Insurance.” In Catastrophe Modeling: A New Approach to Managing Risk, ed. P. Grossi and H. Kunreuther, 23–42. Boston: Springer US. https://doi.org/10.1007/0-387-23129-3_2
Hackl, J., B.T. Adey, M. Heitzler, and I. Iosifescu-Enescu. 2015. “An Overarching Risk Assessment Process to Evaluate the Risks Associated with Infrastructure Networks Due to Natural Hazards.” International Journal of Performability Engineering 11(2), 153–68
Heitzler, M., J. Hackl, B.T. Adey, I. Iosifescu-Enescu, J.C. Lam, and L. Hurni. 2016. “A Method to Visualize the Evolution of Multiple Interacting Spatial Systems.” ISPRS Journal of Photogrammetry and Remote Sensing 117: 217–26. https://doi.org/10.1016/j.isprsjprs.2016.03.002
Heitzler, M., J.C/ Lam, J. Hackl, B.T. Adey, and L. Hurni. 2017. “GPU-Accelerated Rendering Methods to Visually Analyze Large-Scale Disaster Simulation Data.” Journal of Geovisualization and Spatial Analysis, https://doi.org/10.1007/s41651-017-0004-4
InaSAFE. 2017. Available at http://inasafe.org/.
Iosifescu Enescu, I., V. Vescoukis, C.M. Iosifescu Enescu, F. Müller, N.H. Panchaud, and L. Hurni. 2015. “Hypercube-Based Visualization Architecture for Web-Based Environmental Geospatial Information Systems.” Cartographic Journal 52(2): 137–48. https://doi.org/10.1080/00087041.2015.1119469
Keim, D.A. 2002. “Information Visualization and Visual Data Mining.” IEEE Transactions on Visualization and Computer Graphics (1): 1–8. https://doi.org/10.1109/2945.981847
Kellens, W., P. Deckers, H. Saleh, W. Vanneuville, P. De Maeyer, G. Allaert, and R. De Sutter. 2008. “A GIS Tool for Flood Risk Analysis in Flanders (Belgium).” In Proceedings of the Sixth International Conference on Computer Simulation Risk Analysis and Hazard Mitigation, Risk Analysis VI, Cephalonia, Greece, 5–7 May, WIT Transactions on Information and Communication Technologies, Vol. 39, ed. C.A. Brebbia and A. Beriatos, 21–28. Southampton/Boston: WIT Press. https://doi.org/10.2495/RISK080031
Kinkeldey, C. 2014. “Development of a Prototype for Uncertainty-Aware Geovisual Analytics of Land Cover Change.” International Journal of Geographical Information Science 28(10): 2076–89. https://doi.org/10.1080/13658816.2014.891037
Ko, S., J. Zhao, J. Xia, S. Afzal, X. Wang, G. Abram, N. Elmqvist, L. Kne, D. Van Riper, K. Gaither, and others 2014. “VASA: Interactive Computational Steering of Large Asynchronous Simulation Pipelines for Societal Infrastructure.” IEEE Transactions on Visualization and Computer Graphics 20(12): 1853–62. https://doi.org/10.1109/TVCG.2014.2346911
Kull, D.W., and A.D. Feldman. 1998. “Evolution of Clark's Unit Graph Method to Spatially Distributed Runoff.” Journal of Hydrologic Engineering 3(1): 9–19. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(9)
Losey, S., and A. Wehrli 2013. Schutzwald in der Schweiz: Vom Projekt SilvaProtect-CH zum harmonisierten Schutzwald. Final Report. Bern: Bundesamt für Umwelt (BAFU).
Mittelstaedt, S., D. Spretke, D. Sacha, D.A. Keim, B. Heyder, and J. Kopp. 2013. “Visual Analytics for Critical Infrastructures.” In Proceedings of the International ETG-Congress 2013, Symposium 1. Security in Critical Infrastructures Today, Berlin, Germany, 5–6 November, 1–8. Berlin/Offenbach: VDE Verlag
Nocke, T., H. Schumann, and U. Böhm. 2004. “Methods for the Visualization of Clustered Climate Data.” Computational Statistics 19(1): 75–94. https://doi.org/10.1007/BF02915277
Opach, T., and J.K. Rød. 2013. “Cartographic Visualization of Vulnerability to Natural Hazards.” Cartographica 48(2): 113–25. https://doi.org/10.3138/carto.48.2.1840
Pant, R., J.W. Hall, S. Barr, and D. Alderson. 2014. “Spatial Risk Analysis of Interdependent Infrastructures Subjected to Extreme Hazards.” In Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management, ed. M. Beer, S.K. Au, and J.K. Hull, 677–86. Reston: ASCE. https://doi.org/10.1061/9780784413609.069
Schulz, H.-J., T. Nocke, M. Heitzler, and H. Schumann. 2013. “A Design Space of Visualization Tasks.” IEEE Transactions on Visualization and Computer Graphics 19(12), 2366–75
Shneiderman, B. 1996. “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations.” In Proceedings of Visual Languages, 1996, Boulder, CO, 3–6 September, 336–43, Washington, DC/Brussels/Tokyo: IEEE. https://doi.org/10.1109/VL.1996.545307
Steed, C.A., D.M. Ricciuto, G. Shipman, B. Smith, P.E. Thornton, D. Wang, X. Shi, and D.N. Williams. 2013. “Big Data Visual Analytics for Exploratory Earth System Simulation Analysis.” Computers and Geosciences 61: 71–82. https://doi.org/10.1016/j.cageo.2013.07.025
Swayne, D., D.T. Lang, A. Buja, and D. Cook. 2001. “GGobi: XGobi Redesigned and Extended.” In Proceedings of the 33th Symposium on the Interface: Computing Science and Statistics, Costa Mesa, CA, 13–16 June
Szymkiewicz, R. 2010. Numerical Modeling in Open Channel Hydraulics. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3674-2
The World Bank. 2017. Probabilistic Risk Assessment (CAPRA) Program. The World Bank. https://www.ecapra.org/
United States, Department of Homeland Security, Federal Emergency Management Agency. 2017. Hazus. Available at https://www.fema.gov/hazus
Van Ho, Q., P. Lundblad, T. Astrom, and M. Jern. 2012. “A Web-Enabled Visualization Toolkit for Geovisual Analytics.” Information Visualization 11(1): 22–42. https://doi.org/10.1177/1473871611425870
Voumard, J., O. Caspar, M.H. Derron, and M. Jaboyedoff. 2013. “Dynamic Risk Simulation to Assess Natural Hazards Risk along Roads.” Natural Hazards and Earth System Sciences 13(11): 2763–77. https://doi.org/10.5194/nhess-13-2763-2013
Waser, J., R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and E. Groller. 2010. “World Lines.” IEEE Transactions on Visualization and Computer Graphics 16(6): 1458–67. https://doi.org/10.1109/TVCG.2010.223
Wiréhn, L., T. Opach, and T.-S. Neset. 2017. “Assessing Agricultural Vulnerability to Climate Change in the Nordic Countries – An Interactive Geovisualization Approach.” Journal of Environmental Planning and Management 60(1): 115–34. https://doi.org/10.1080/09640568.2016.1143351
Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär. 2010. “A Gridded Hourly Precipitation Dataset for Switzerland Using Rain-Gauge Analysis and Radar-Based Disaggregation.” International Journal of Climatology 30(12): 1764–75

Information & Authors

Information

Published In

Go to Cartographica
Cartographica: The International Journal for Geographic Information and Geovisualization
Volume 52Number 4Winter 2017
Pages: 349 - 363

History

Published in print: Winter 2017
Published online: 21 December 2017

Keywords:

  1. risk assessment
  2. modelling and simulation
  3. natural hazards
  4. spatiotemporal
  5. visualization

Mots clés :

  1. évaluation des risques
  2. modélisation et simulation
  3. risques naturels
  4. spatiotemporel
  5. visualisation

Authors

Affiliations

Magnus Heitzler
Biography: Magnus Heitzler is a doctoral student at the Institute of Cartography and Geoinformation, ETH Zurich, Switzerland. He holds a BSc in Geosciences from the University of Freiburg, Germany, and a MSc in Geoinformation and Visualization from the University of Potsdam, Germany. His research interests focus on GIS and visualization methods for natural disaster risk assessments. E-mail: [email protected].
Institute of Cartography and Geoinformation / ETH Zurich / Zurich / Switzerland
Juan Carlos Lam
Biography: Juan Carlos Lam is a scientific assistant at the Institute of Construction and Infrastructure Management at ETH Zurich. He holds degrees from the University of Virginia and Virginia Tech. His research interests include (i) designing and executing disaster risk and resilience assessments, functional loss assessment of networks, and stress tests, (ii) mainstreaming disaster risk and resilience management into infrastructure sectors, and (iii) developing optimal infrastructure management strategies. E-mail: [email protected].
Institute of Construction and Infrastructure Management / ETH Zurich / Zurich / Switzerland
Jürgen Hackl
Biography: Jürgen Hackl is a doctoral student at the Institute of Construction and Infrastructure Management, ETH Zurich. He holds a Diploma in Civil Engineering and Construction Management from TU Graz, Austria, and a MSc in structural engineering from TU Graz in cooperation with the Norwegian University of Science and Technology. His research interests focus on stochastic spatial–temporal network modeling for infrastructure systems. E-mail: [email protected].
Institute of Construction and Infrastructure Management / ETH Zurich / Zurich / Switzerland
Bryan T. Adey
Biography: Bryan Adey is a Professor of Infrastructure Management at the Institute of Construction and Infrastructure Management, ETH Zurich. He holds a BSc in civil engineering from Dalhousie University, Canada, a MSc in structural engineering from the University of Alberta, Canada, and a PhD in infrastructure management from ETH Lausanne, Switzerland. His research interests focus on frameworks, methodologies, models, and tools to improve the management of infrastructure to ensure the functioning of society. E-mail: [email protected].
Institute of Construction and Infrastructure Management / ETH Zurich / Zurich / Switzerland
Lorenz Hurni
Biography: Lorenz Hurni is a Professor of Cartography at the Institute of Cartography and Geoinformation, ETH Zurich. He graduated in geodesy and holds a doctoral degree in cartography from ETH Zurich. He is managing editor-in-chief of the Atlas of Switzerland, the Swiss national atlas, as well as of the Swiss World Atlas, the official Swiss school atlas. His main research interests are cartographic data models, tools for the production of printed and multimedia maps, and interactive, multidimensional multimedia map representations. E-mail: [email protected].
Institute of Cartography and Geoinformation / ETH Zurich / Zurich / Switzerland

Metrics & Citations

Metrics

VIEW ALL METRICS

Related Content

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Format





Download article citation data for:
Magnus Heitzler, Juan Carlos Lam, Jürgen Hackl, Bryan T. Adey, and Lorenz Hurni
Cartographica 2017 52:4, 349-363

View Options

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

EPUB

View EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

About Cookies On This Site

We use cookies to improve user experience on our website and measure the impact of our content.

Learn more

×